Multinomial Logistic Regression

Introduction

Prof. Maria Tackett

Click for PDF of slides

Topics

- Introduce multinomial logistic regression
- Interpret model coefficients
- Inference for a coefficient β_{jk}

Generalized Linear Models (GLM)

- In practice, there are many different types of response variables including:
 - Binary: Win or Lose
 - Nominal: Democrat, Republican or Third Party candidate
 - Ordered: Movie rating (1 5 stars)
 - and others...
- These are all examples of generalized linear models, a broader class of models that generalize the multiple linear regression model
- See <u>Generalized Linear Models: A Unifying Theory</u> for more details about GLMs

Binary Response (Logistic)

• Given $P(y_i = 1 | x_i) = \hat{\pi}_i$ and $P(y_i = 0 | x_i) = 1 - \hat{\pi}_i$

$$\log\left(\frac{\hat{\pi}_i}{1-\hat{\pi}_i}\right) = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

• We can calculate $\hat{\pi}_i$ by solving the logit equation:

$$\hat{\pi}_i = \frac{\exp{\{\hat{\beta}_0 + \hat{\beta}_1 x_i\}}}{1 + \exp{\{\hat{\beta}_0 + \hat{\beta}_1 x_i\}}}$$

Binary Response (Logistic)

Suppose we consider y = 0 the **baseline category** such that

$$P(y_i = 1 | x_i) = \hat{\pi}_{i1}$$
 and $P(y_i = 0 | x_i) = \hat{\pi}_{i0}$

Then the logistic regression model is

$$\log\left(\frac{\hat{\pi}_{i1}}{1-\hat{\pi}_{i1}}\right) = \log\left(\frac{\hat{\pi}_{i1}}{\hat{\pi}_{i0}}\right) = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

Slope, $\hat{\beta}_1$: When x increases by one unit, the odds of y=1 versus the baseline y=0 are expected to multiply by a factor of $\exp\{\hat{\beta}_1\}$

Intercept, $\hat{\beta}_0$: When x=0, the predicted odds of y=1 versus the baseline y=0 are $\exp\{\hat{\beta}_0\}$

Multinomial response variable

- Suppose the response variable y is categorical and can take values $1, 2, \ldots, K$ such that (K > 2)
- Multinomial Distribution:

$$P(y = 1) = \pi_1, P(y = 2) = \pi_2, \dots, P(y = K) = \pi_K$$

such that
$$\sum_{k=1}^{K} \pi_k = 1$$

Multinomial Logistic Regression

- If we have an explanatory variable x, then we want to fit a model such that $P(y = k) = \pi_k$ is a function of x
- Choose a baseline category. Let's choose y = 1. Then,

$$\log\left(\frac{\pi_{ik}}{\pi_{i1}}\right) = \beta_{0k} + \beta_{1k}x_i$$

 In the multinomial logistic model, we have a separate equation for each category of the response relative to the baseline category

Multinomial Logistic Regression

- Suppose we have a response variable y that can take three possible outcomes that are coded as "A", "B", "C"
- Let "A" be the baseline category. Then

$$\log\left(\frac{\pi_{iB}}{\pi_{iA}}\right) = \beta_{0B} + \beta_{1B}x_i$$

$$\log\left(\frac{\pi_{iC}}{\pi_{iA}}\right) = \beta_{0C} + \beta_{1C}x_i$$

NHANES Data

- National Health and Nutrition Examination Survey is conducted by the National Center for Health Statistics (NCHS)
- The goal is to "assess the health and nutritional status of adults and children in the United States"
- This survey includes an interview and a physical examination

NHANES Data

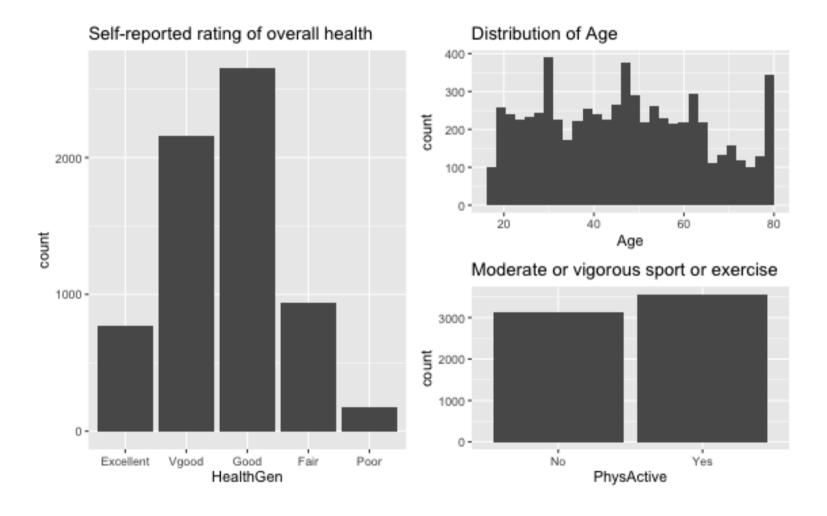
- We will use the data from the **NHANES** R package
- Contains 75 variables for the 2009 2010 and 2011 2012 sample years
- The data in this package is modified for educational purposes and should **not** be used for research
- Original data can be obtained from the <u>NCHS website</u> for research purposes
- Type ?NHANES in console to see list of variables and definitions

Health Rating vs. Age & Physical Activity

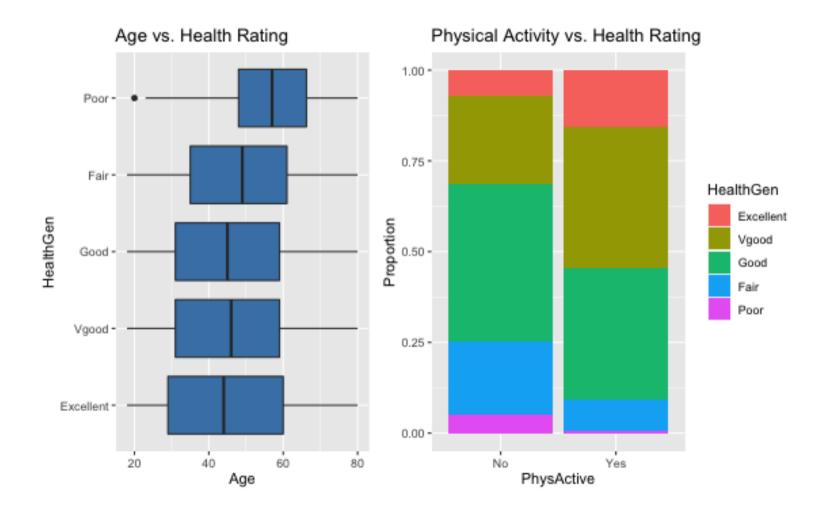
- Question: Can we use a person's age and whether they do regular physical activity to predict their self-reported health rating?
- We will analyze the following variables:
 - **HealthGen:** Self-reported rating of participant's health in general. Excellent, Vgood, Good, Fair, or Poor.
 - **Age:** Age at time of screening (in years). Participants 80 or older were recorded as 80.
 - PhysActive: Participant does moderate to vigorous-intensity sports, fitness or recreational activities

The data

Exploratory data analysis



Exploratory data analysis



Model in R

Use the multinom() function in the nnet package

Put results = "hide" in the code chunk header to suppress convergence output

Output results

```
tidy(health_m, conf.int = TRUE, exponentiate = FALSE) %>%
kable(digits = 3, format = "markdown")
```


Model output

y.level	term	estimate	std.error	statistic	p.value	conf.low	conf.high
Vgood	(Intercept)	1.205	0.145	8.325	0.000	0.922	1.489
Vgood	Age	0.001	0.002	0.369	0.712	-0.004	0.006
Vgood	PhysActiveYes	-0.321	0.093	-3.454	0.001	-0.503	-0.139
Good	(Intercept)	1.948	0.141	13.844	0.000	1.672	2.223
Good	Age	-0.002	0.002	-0.977	0.329	-0.007	0.002
Good	PhysActiveYes	-1.001	0.090	-11.120	0.000	-1.178	-0.825
Fair	(Intercept)	0.915	0.164	5.566	0.000	0.592	1.237
Fair	Age	0.003	0.003	1.058	0.290	-0.003	0.009
Fair	PhysActiveYes	-1.645	0.107	-15.319	0.000	-1.856	-1.435
Poor	(Intercept)	-1.521	0.290	-5.238	0.000	-2.090	-0.952

Fair vs. Excellent Health

The baseline category for the model is **Excellent**.

The model equation for the log-odds a person rates themselves as having "Fair" health vs. "Excellent" is

$$\log\left(\frac{\hat{\pi}_{Fair}}{\hat{\pi}_{Excellent}}\right) = 0.915 + 0.003 \text{ age} - 1.645 \text{ PhysActive}$$

Interpretations

$$\log\left(\frac{\hat{\pi}_{Fair}}{\hat{\pi}_{Excellent}}\right) = 0.915 + 0.003 \text{ age} - 1.645 \text{ PhysActive}$$

For each additional year in age, the odds a person rates themselves as having fair health versus excellent health are expected to multiply by 1.003 (exp(0.003)), holding physical activity constant.

The odds a person who does physical activity will rate themselves as having fair health versus excellent health are expected to be 0.193 (exp(-1.645)) times the odds for a person who doesn't do physical activity, holding age constant.

Interpretations

$$\log\left(\frac{\hat{\pi}_{Fair}}{\hat{\pi}_{Excellent}}\right) = 0.915 + 0.003 \text{ age} - 1.645 \text{ PhysActive}$$

The odds a 0 year old person who doesn't do physical activity rates themselves as having fair health vs. excellent health are 2.497 (exp(0.915)).

! Need to mean-center age for the intercept to have a meaningful interpretation!

Hypothesis test for β_{jk}

The test of significance for the coefficient β_{jk} is

Hypotheses: $H_0: \beta_{jk} = 0$ vs $H_a: \beta_{jk} \neq 0$

Test Statistic:

$$z = \frac{\hat{\beta}_{jk} - 0}{SE(\hat{\beta}_{jk})}$$

P-value: P(|Z| > |z|),

where $Z \sim N(0, 1)$, the Standard Normal distribution

Confidence interval for β_{jk}

• We can calculate the **C% confidence interval** for β_{jk} using the following:

$$\hat{\beta}_{jk} \pm z^* SE(\hat{\beta}_{jk})$$

where z^* is calculated from the N(0, 1) distribution

We are C% confident that for every one unit change in x_j , the odds of y = k versus the baseline will multiply by a factor of $\exp{\{\hat{\beta}_{jk} - z^*SE(\hat{\beta}_{jk})\}}$ to $\exp{\{\hat{\beta}_{jk} + z^*SE(\hat{\beta}_{jk})\}}$, holding all else constant.

Interpreting confidence intervals for β_{jk}

y.level	term	estimate	std.error	statistic	p.value	conf.low	conf.high
Fair	(Intercept)	0.915	0.164	5.566	0.00	0.592	1.237
Fair	Age	0.003	0.003	1.058	0.29	-0.003	0.009
Fair	PhysActiveYes	-1.645	0.107	-15.319	0.00	-1.856	-1.435

We are 95% confident, that for each additional year in age, the odds a person rates themselves as having fair health versus excellent health will multiply by 0.997 (exp(-0.003)) to 1.009 (exp(0.009)), holding physical activity constant.

Interpreting confidence intervals for β_{jk}

y.level	term	estimate	std.error	statistic	p.value	conf.low	conf.high
Fair	(Intercept)	0.915	0.164	5.566	0.00	0.592	1.237
Fair	Age	0.003	0.003	1.058	0.29	-0.003	0.009
Fair	PhysActiveYes	-1.645	0.107	-15.319	0.00	-1.856	-1.435

We are 95% confident that the odds a person who does physical activity will rate themselves as having fair health versus excellent health are 0.156 (exp(-1.856)) to 0.238 (exp(-1.435)) times the odds for a person who doesn't do physical activity, holding age constant.

Recap

- Introduce multinomial logistic regression
- Interpret model coefficients
- Inference for a coefficient β_{jk}

